Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus.
نویسندگان
چکیده
This study was undertaken to assess utilization of FFA by skeletal muscle in patients with non-insulin-dependent diabetes mellitus (NIDDM). 11 NIDDM and 9 nondiabetic subjects were studied using leg balance methods to measure the fractional extraction of [3H]oleate. Limb indirect calorimetry was used to estimate RQ. Percutaneous muscle biopsy samples of vastus lateralis were analyzed for muscle fiber type distribution, capillary density, and metabolic potential as reflected by measurements of the activity of seven muscle enzyme markers of glycolytic and aerobic-oxidative pathways. During postabsorptive conditions, fractional extraction of oleate across the leg was lower in NIDDM subjects (0.31 +/- 0.08 vs. 0.43 +/- 0.10, P < 0.01), and there was reduced oleate uptake across the leg (66 +/- 8 vs. 82 +/- 13 nmol/min, P < 0.01). Postabsorptive leg RQ was increased in NIDDM (0.85 +/- 0.03 vs. 0.77 +/- 0.02, P < 0.01), and rates of lipid oxidation by skeletal muscle were lower while glucose oxidation was increased (P < 0.05). In subjects with NIDDM, proportions of type I, IIa, and IIb fibers were 37 +/- 2, 37 +/- 6, and 26 +/- 5%, respectively, which did not differ from nondiabetics; and capillary density, glycolytic, and aerobic-oxidative potentials were similar. During 6 h after ingestion of a mixed meal, arterial FFA remained greater in NIDDM subjects. Therefore, despite persistent reduced fractional extraction of oleate across the leg in NIDDM (0.34 +/- 0.04 vs. 0.38 +/- 0.03, P < 0.05), rates of oleate uptake across the leg were greater in NIDDM (54 +/- 7 vs. 45 +/- 8 nmol/min, P < 0.01). In summary, during postabsorptive conditions there is reduced utilization of FFA by muscle, while during postprandial conditions there is impaired suppression of FFA uptake across the leg in NIDDM. During both fasting and postprandial conditions, NIDDM subjects have reduced rates of lipid oxidation by muscle.
منابع مشابه
Obesity and Insulin Resistance: An Abridged Molecular Correlation
A relationship between obesity and type 2 diabetes is now generally well accepted. This relationship represents several major health hazards including morbid obesity and cardiovascular complications worldwide. Diabetes mellitus is a complex metabolic disorder characterized by impaired insulin release and insulin resistance. Lipids play an important physiological role in skeletal muscle, heart, ...
متن کاملBasic disturbances in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus.
The present article addresses the hypothesis that disturbances in skeletal muscle fatty acid handling in abdominal obesity and type 2 diabetes mellitus may play a role in the aetiology of increased adipose tissue stores, increased triacylglycerol storage in skeletal muscle and skeletal muscle insulin resistance. The uptake and/or oxidation of fatty acids have been shown to be impaired during po...
متن کاملImpaired expression of NADH dehydrogenase subunit 1 and PPARgamma coactivator-1 in skeletal muscle of ZDF rats: restoration by troglitazone.
Type 2 diabetes has been related to a decrease of mitochondrial DNA (mtDNA) content. In this study, we show increased expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target genes involved in fatty acid metabolism in skeletal muscle of Zucker Diabetic Fatty (ZDF) (fa/fa) rats. In contrast, the mRNA levels of genes involved in glucose transport and utilizati...
متن کاملMuscular response and adaptation to diabetes mellitus.
Diabetes mellitus (DM) is an epidemic medical challenge that threatens the health and life quality of people worldwide. DM impairs metabolic, neural and vascular function and thus has profound impacts on different systems and organs in the body. Though continuous endeavour has been made to study its etiology and mechanisms, no cure for DM has yet been found. DM development may be multi-factoria...
متن کاملAMP-activated protein kinase, a metabolic master switch: possible roles in Type 2 diabetes.
Adenosine 5'-monophosphate-activated protein kinase (AMPK) now appears to be a metabolic master switch, phosphorylating key target proteins that control flux through metabolic pathways of hepatic ketogenesis, cholesterol synthesis, lipogenesis, and triglyceride synthesis, adipocyte lipolysis, and skeletal muscle fatty acid oxidation. Recent evidence also implicates AMPK as being responsible for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 94 6 شماره
صفحات -
تاریخ انتشار 1994